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TE Wave Properties of’ Slab Dielectric Guide

Bounded by Nonlinear Non-Kerr-Like Media
Jian-Guo Ma and Ingo Wolff, Fellow, IEEE

Abstract— TE wave properties of slab dielectric waveguides
with nonlinear non-Kerr-like substrate and cladding are pre-

sented. The guide can support even- and odd-symmetric modes
in asymmetrical substrate and asymmetrical modes in completely

symmetrical substrate. Dispersion relations and electric field
profiles are illustrated and analytically discussed in detail.

I. INTRODUCTION

I T has been known since the early 1980s [3]–[6] that prop-

erties of waves guided by thin films take on striking new

properties when one or more of the bounding media exhibits an

intensity-dependent refractive index. With appropriate material

conditions. both wave-vector and field distributions become

strongly power dependent. Because a number of potential

applications for such nonlinear waveguides to all optical signal

processing have been identified in recent years with the devel-

opment of technology, increasing attention has been devoted

to these effects with a view to realizing these optical devices.

These developments. in turn, have recently stimulated more

realistic theoretical investigations of properties of nonlinear

guided waves [1], [7]–[1 3]. With some exceptions (see e.g.,

[1], [5], [9], and [10]), many theoretical studies of nonlinear

guided waves have been limited to Kerr-like nonlinear media

([3], [4], [6], [7], and [13] and references therein). Moreover,

useful solutions of the nonlinear wave equation which include

a field-dependent dielectric constant have been obtained for

the Kerr-law case.

However, in real world cases, many materials exhibit a

refractive index which varies with the electric field raised

to a power other than two [1], [5]. The actual dependence

of the index on the optical field is intimately related to

the physical process which gives rise to nonlinearities, such

as semiconductors diffusion and recombination effects, etc.

In retrospect, the formalism necessary for generalizing the

analysis of nonlinear slab-guided wave phenomena to non-

Ken-like media has been available for some time [1], [5].

[9], and [10] and many numerical methods, such as beam
propagation method [11 ], finite-element method [12], the first

integration method [5], the phase-plane approach [1], and

Runge–Kutta [2] have been employed.

Here, we systemetrically examine the variation in TE wave

solutions with guided wave power, because the use of TE

solutions has the strong theoretical advantage that Maxwell’s
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equations reduce to a single fundamental nonlinem equation

that, under an assumption of power-dependence with a form

e. - IE16, where 6 is a arbitrary positive quantity, can be

solved analytically. The structure discussed in this paper is

a linear thin dielectric slab guide, with refractive index nf,

sandwiched between two nonlinear semi-infinite dielectrics.

For the case of Kerr-like nonlinearity Boardman e? al. [6]

and Seaton et al. [3] have studied this structure numerically

and analytically in detail, respectively. For the case of non-

Kerr-like nonlinearity, which is the more practical case, this

structure has been numerically discussed by Stegeman et al.

[5] using the first integration method.

Although numerical methods are generally effective, they

present also the disadvantage of not allowing physical in-

terpretation of solutions. In nonlinear problems, in fact, the

existence and identification of invariant quantities related to

observable physical parameters of the configuration is partic-

ularly important. Using purely numerical methods, however, a

qualitative analysis of the structure is not possible and many

of its underlying features can not be perceived so clearly.

In this paper, a slab guide with a nonlinear cladding and

substrate both having nonquadratic power-law dependent re-

fractive index is analytically studied, and closed-form solutions

will be given for the first time. They indicate that there are

even- and odd-symmetric modes in this structure not only for

symmetric cladding and substrate, but also for asymmetric

cladding and substrate, and for completely symmetric cladding

and substrate there are asymmetric modes too. Propagation

properties of the guide are illustrated and discussed.

This paper is organized as follows: In the next section an-

alytical solutions for special non-Kern-like nonlinearity which

varies with the electric field raised to a power other than two

are given. The third section deals in detail with analytical

results for even- and odd-symmetrical modes supported by this

structure, General TE modes are presented in Section IV. Some

general properties and conclusions are discussed in Section V.

Since it is not feasible to examine all possibilities in detail, we
will concentrate on those which are of interest for experiments

and potential device applications.

II. THEORETICAL APPROACH AND ANALYTICAL SOLUTIONS

The geometry considered in this paper is shown in Fig. 1.

It is assumed that the film region ( –d < z < d) has a linear

refractive index n ~ (related relative dielectric constant is

c~) that is independent of the wave power. Both of the

cladding and substrating media can exhibit a field-dependence

relative dielectric constant of the form CC= n: + aCIEC 16Cor
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Fig. 1. The nonlinem guided wave geometry for the analysis.

6. =TJ:+a.p.l ‘S for the cladding and substrating medium, The analytical solution of uC(X) and us(X) for focusing

respectively. Wave fields investigated here are TE polarized and defocusing media, respectively, is formed as follows:

having the form [5] For focusing medium (o~ = 1), let

I?(r-, t) = Re {E(x) ei(wt-pz)}. (1)

Only the component Ev of electric field is not zero in this thus

case.

Using c, ~,s referring to cladding, film and substrate, re-

spectively, the field must satisfy the following equations [5]:

d2Eyc
~ + (k;rt~ – 92 + k~CY.lEy.18c)Ey. = O,

(X< -d) (2) and
d2Ev~

dx2
+ (k~n; – B2)Ev~ = O, (-d s z s d) (3)

d2Eys
~ + (k~n; – @z + k;a.lEv.18s)Ey. = O,

(d< X) (4)

where k: = w2pO~0, ffi (i = c,s) is the nonlinear coefficient.

ai >0 (i = c,s) is named a focusing medium, and ai <0 (i = -

A.
u.(x) = + (11)

cosh~’ [.BC(XC – a – X)]

tiC = AJ3C tanh [BC(XC – a – X)] UC(X), (12)

ii. = (&13C tanh [13C(XC – a – X)])2UC(X)

– JCB~
u.(x)

coshz [l?c(Xc – a – X)]

A,
u.(x) = +

coshAs [B, (X, – a + X)]’

(13)

US = –A.lls tanh [B. (X, – a + X)] US(X), (15)

U, = (&B~ tanh [B~(X~ – a + X)])2U. (X)

– &B~
u.(x)

(16)
coshz [B, (X, – a + X)]

[1] -

k: =N2 – n~, k~=n~– N2, k~=N2–n~,

X=kOx, N=;, a = kOd
0

and

UC(X) = laJ1/6cEyJX), uf(X) = Eyf(X),

u,(X) = la.llf8sE~,(X)

thus the wave equations (2)–(4) become

‘&(x) – (k: – C7clti. p)tic(x) = % X<–.

tif(x) + k;uf(x) = o, —a<X<a

‘&(x) – (k: – Crs]usf’)lk(x) = 0> a<X

(14)

c,s) a defocusing medium. where Ai >0 (i = c,s). Substituting (1 1)–(13) into (8)

Using normalized parameters recommended by Rozzi et al. (&BC tanh [B.(XC - a - X)])’

AcB;— – l%:
(5) coshz [BC(XC – a -- X)]

(6)
A~c

+ = o. (17)
cosh~c~c [BC(XC – a – X)]

If (17) is satisfied, it must be

AC=;, Bc=~=~kc,

(7)

A.=@#’c
(18)

(8) Therefore, the solution of u.(X) in the cladding is

(9)

(lo)
u.(x) = * (+)’”C

l/6c “ (19)

where for focusing media cr~ = 1 and for defocusing media

{[
coshz $kC(XC – a – X)

a~ = –1 (i = C, S). ~“) = dz( )/dX2. 1}
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Similarly, the solution of uS(X) in the substrate is

u.(x) = + (“+71”s
{[

1/6. “
(20)

cosh2 ~k, (X, –a+X)
1}

For defocusing media (a, = – 1), analytical solutions can

be also obtained

()~22 +6. l’bc

‘2
‘u=(x) = *

{[

I/bc ‘
(21)

sinhz ;kc(xc – a– x)
1}

u,(x) = * (k’?)’’”

{[

1/6, (’22)

sinh2 ~k.(X. – a+X)
1}

Thus, solutions for non-Kern-like nonlinear focusing and

defocusing media are derived, respectively. Here Xc and X.

are parameters related to initial conditions. In (19) and (20)

Xz (i = c,s) can be positive, negative and zero. But for

solutions of defocusing media X. and X$ must be positive,

because the function 1/ sinh (w) has a pole at w = 0, If
6, = 2 (~ = C,s) (Kerr-law dependence) solutions (19)-(22)

are identical to those given by [3] and [4]. Using the derived

analytical solutions electromagnetic wave propagation of the

waveguide shown in Fig. 1 is studied.

111, SYMMETRIC MODES

For symmetric modes (even modes) there is Ef ( –a ) =

Ef (a), and for anti-symmetric modes (odd modes) there is

Ef(–a) = –Ef(a).

A. Even Modes or Symmetric Modes

The solution of guided-waves in a linear film is well known

uj(x) ==A~ COS (kf.%”), ~ < nf. (23)

Using boundary conditions at X = +a, for focusing

medium we have

()(5 C-x”ckc
tan (kfa) = ~ tanh ————

kf 2’

k.

()

~anh 68X.L,—
~ 2’

(25)

(24)

1 uc(–a)
(26)

‘f = * cos (kfa)’

1 u,(a)

~:/6. Cos (kfa) “
(27)

It must be

“’a”h(%) ‘kstanhF+ and
urc(–a) u.(a)

1/6< — 1/8. “ (28)
Clc a.

For u; <O, coth (6CXCkC/2) and coth (6, X-~k. /2) replace

the tanh (6CXCkC/2) and tanh (6~X~k,/2) functions in the

above equations. The dispersion relation is:

1 ( (-))k:
a=k”d=~ ‘nr+arctankf ‘

77 L=(O),1,2,... (29)

with

()C$Cxckc
ik~ = kc tanh — focusing-medium

2’
(30)

or

()6CXJC.
k; = kCcoth ~ defocusing-medium. (31)

If X. - cc, (29) becomes the linear dispersion equation.

XC can be both positive and negative, if XC ~ O,m must be

larger than zero. Now the mode with m = O does not exist,

and the mode with m = 1 becomes the fundamental mode.

In Fig. 2 dispersion relations of even symmetric modes

are given. It shows if XC = O, curves for various AC are

overlapping, and the m = O mode in nonlinear cases only

exists for XC >0. If XC >0, the, larger 6C is, the smaller the

difference between linear cases and nonlinear cases is. But for

XC <O, the larger 6. is, the larger the difference between linear

cases and nonlinear cases is. If the cladding and the substrate

are both focusing media, all curves of the nonlinear case are

above those of the linear case, but for defocusing media curves

of the linear case are above those of the nonlinear case as

indicated in Fig. 2(c).

As an example, the elech-ic field distributions of the even-

mode TE1 are shown in Fig. 3, the parameters are: N =

1.560099, 6C = 1.0, 1.5,2.0,2.5, XC = 5 or .YC = –5 and

a, = 1. It is shown that for XC = —5 there is a maximum in

the cladding and the substrate.

B. Odd-Modes or Antisymmetric Modes

In the case of odd modes the solution of guided-wave in

the linear film is

7/,f (X) = Bf sin (kfX), N<nf (32)

and the dispersion relation is

a=kod=$[t’++arctan(:)1 ’33)
also (28) must be satisfied.
In Fig. 4 dispersion curves of the odd TE guided modes are

given for a focusing cladding and substrate.

C. Remarks

For a focusing media if Xc is zero, k: defined in (29) is

zero, too. Now both dispersion relations of the even-modes

(29) and the odd-modes (33) are dependent only on kf. That

means, they are independent of k., k, and 6C,6.. For even-

and odd-symmetric modes, only the conditions given in (28)

are needed. If n. = nf, 6, = 6,, a. = a,, X. = X,, these

conditions are automatically satisfied. In the following the



MA AND WOLFI+ TE WAVE PROPERTIES OF SLAB DIELECTRIC GUIDE

1.5700, 1

1.5650

I~1.5600

:
:

1.5550./
:
:
:
:

1.5500:
m=fJ

I
o

I
k

I I
10 20 30 40 50

lJ-

(a)

1 I
0 10 20 30 40 50

a----+

(c)

o 10 20 30 40

a-

(b)

0 10 20 30 40 50

a---t

(d)

733

50

Fig. 2. Dispersioncnrvesof even-modesfor various X.. w = n, = 1.55,nf = 1.57. Dotted lines: linear cases.& is 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5,
and 4.0 from left to right for (c) and from right to left for (b) and (d), respectively,for eachmode m. (a) A-c = O,0 = 1., (b) Xc = – 1, u = – 1.,
(c) X. = l,a = 1., (d) X-c = l,a = –1.

asymmetric case shall be studied. For simplicity only the case

6C = $, = 6 is discussed. Conditions in (28) become

r7c=a. =1:

‘Ctanh(w ‘kstanh(a ’34)

where the solutions (19) and (20) have been used. And

[

sinh (8Xsk,/2) = ~.
(36)

sinh (6XCkC/2) cz~

If X. = O, it follows from (34) that X, must be also zero;

(35) is

(37)

that is, if rzc # ns, we can choose a suitable parameter

pair ac, Xc and as, X. to satisfy (36), (37), or (28). NOW

the cladding and the substrate are not symmetric, but it can

support even- and odd-symmetric modes. For given cladding

and substrate, only these modes which have the normalized
propagation constant N determined by (36) can exist in this

structure with symmetric or anti-symmetric field distribution.

As an example, in Fig. 5 the dependence a = ~- versus

X. are drawn for Xc = 10., n. = 1.55, ns = 1.54, nf =

1.57, N = 1.560099, m. = o. = 1 and 8 = 0.5, 1.0, 1.5, 2.0,

2.5, and 3.0. All of values in these curves satisfy (28) and
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Fig. 3. Electric field distributions @(x) = s= ,?3(.) of the

TE1 -mode for focusing media. Solid lines: XC = X-s = 5; Dotted
lines: ,YC = .Y, = –5, ISC= 1, 1.5, 2, and 2.5.

can support both even- and odd-modes which have the same

values N and a = i%d.

Therefore, for completely asymmetric substrates even- and

odd-modes can also propagate in nonlinear guides unlike in

linear cases ! For other cases ac # a. and 6C # 6, similar

results can be also obtained.

From (29) and (33) it is known that the dispersion relation

of the even- or odd-modes is only an explicit function of k:

and it is not directly dependent on the parameter k;. k: can

be determined from (36).

IV. GENERAL TE-MODES

A general solution for the field in the linear guide for guided

waves is:

uf(X) = At cos (k~X) + Bf sin (kfX). (38)

Using solutions given in (19)–(22) and boundary conditions
at A“ = +a we have

Af [k~ sin (kfa) – k: cos (kfa)] + llf[kf cos (kfa)

+ t%: sin (kfa) = O, (39)

–Af [k~ sin (kfa) – lc~ cos (kfa)] + ~f [kf cos (kfa)

+ k~ sin (kfa) = O (40)

with

()

ti,xtk%
k: = k, tanh — for focusing-medium,

2

(i= C,s), (41)

()

k; = k, coth ‘ii~kz for de-focusing-medium,

(Z=c, s). (42)

If k: = tl~, because (39) and (40) must be simultaneously

satisfied, this leads to

Af=O, Bf#O or Af #O, B~=O (43)

1.5’?00

.“

1.5650

I
1.5600

k

1.5550

1.5500
m=1 m=2 m=3

o 10 20 30 40 50

z/d —

(a)

L550i)1

o 10 20 24 40 50

(b)

m.f & n=2

10 20 30 40 50

(c)

Fig. 4. Dispersion curves of odd TE modes. o, = 1, nc = TZS =

nf = 1.57. (a) .k-~ = O. (b) Xr = 1, (c) .l-C = _l,

1996

1.55,

in other words, these modes degenerate into odd-modes or

even-modes as they have been discussed in the above section.

That is, if and only if k: = k:, the structure can support even-

and odd-modes.
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Fig. 5. - versus X8 for XC = 10, nC = 1.55, ns = 1.54, nf =

1.57,N = 1.560099, U. = as = 1 and 6 = 0.5, 1.0, 1.5, 2.0, 2,5, aad 3.0.

From (39) and (40) the dispersion equations can be derived

kfa = mx + arctan

“{J[k; + (k~)’][k; + (k:)’] – (k; - kjk:)

kf(k~ + k+)
}

>

(m=(0),l,2 .), (44)

and

kf a = m~ – arctan

(m= (0),1,2,...). (45)

Here the existence of the mode with m = O depends on the

parameters X. and Xs. If k: + lc~>0, in (44) m can be zero,

but in (45) m must >0. If k: + k:< O, now in (44) m must

>0, and in (45) m can be zero.
If k: = k;, (44) and (45) will be identical with (29) and

(33), respectively.

Let A = k: – k:> O and (A/k~) <1, then (44) and (45)

can approximately be written as

and

kf
tan (kja) w –~.

c

(46)

(47)

It shows that effects of A on even-modes are larger than

those on odd-modes.

The derived dispersion equations (44) and (45) are valid for

all possible combinations of the cladding and the substrate.
only k: and k: are different and they are given by (41) and

(42).

I
“. .’

. . . z.5 .“
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,.$

““. O. ...,,..”
0.00

l!____“., , 2. ,.,,
. . . . ..O$

0.04 ,, .,,.,,
, ,6=3

,,.,:,,,.. ‘ ‘●:,...,,, 2,5 ●

●b*
.

2. ““”.., ‘.,

0.04
r:,~~i~’’’”,.,

0.00 O.M 0.00 0.12 0

735

,6
E~(–a) —

Fig. 6. Phase portrait of the asymmetric structure: nf = 1.57, n. =
1.55, ns = 1.54, as/crc = 1.5,6 = 3.0, 2.5, 2.0, and 1.0, respectively,

l:l’kz /

Fig. 7. Phase portrait of the completely symmetric structure:

= 1.57, nc = n, = 1.55, as/ac = 1.,6 = 1.0, 1.5, 1.75, and
;.6.

If k; # k:, there will be no even- and odd-symmetric modes

in this structure. In (41) and (42) the parameter Xi (i = c,s)

is dependent only on initial conditions and is neither a material

nor a structure parameter. If the cladding and the substrate are

really symmetric, that is, 6C = 6S, rac = n., ac = a,, and

X. # X., we have k: # k:. That means only asymmetrical

modes now can exist in the structure. In linear cases if and

only if the cladding and the substrate are symmetric, even-

and odd-modes can propagate in these guides. For Kerr-like

cladding and substrate (8C = 6S = 2) our conclusion consists

with results given by Boardman et al. [6, pp. 1703] who have

found that there are unusual asymmetric waves in a completely

symmetric structure.

In Fig. 6 phase portraits for asymmetric structures are given.

They indicate that for each set of determined structure param-

eters there are two branches. For the completely symmetric
structure the phase portrait is shown in Fig. 7. It shows that

there are either symmetric modes (diagonal line) or unusual

asymmetric modes (other lines). Here & = Ss. From Fig. 7

it is seen that for a given value of E: ( —a) there are two

values of E:(a), one is for symmetric modes and the other

for asymmetric modes.
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Fig. 8. The cutoff factor a c versus .Y-, according to (44) with

nf = 1,57, nc = 1,55, n, = 1.54, tis = 1.0, 1,5, 2.0, 2.5, and 3.0,
respectwely, for focusing substrate and o, = 1. ● e o 0: linear modes.
(a)m=O, (b)m=l.

In following discussion, it is always assumed that nC > ns.

Now the cut-off condition is kC = O or N = n,. From (44)

and (45) the cut-off factor aC can be simply obtained. For

CTc =1, kC=O*k~=O, foroC= –l, kC=O*

k: = (2/6CXC), (XC> O). Thus, for focusing cladding the

cut-off factor aC is independent of the parameters XC, 6C, but

for defocusing cladding it is also a function of parameters

XC, 6C. As examples, only cutoff conditions of modes m = O

and m = 1 according to (44) with k. = O are shown.

Here nf = 1.57, nC = 1.55, n, = 1.54,6s = 1.0, 1.5,

2.0, 2.5, and 3.0 and the cladding is focusing medium. For

focusing substrate the dependencies aC versus X. are given

in Fig. 8(a) and (b) for m = O and m = 1, respectively, and

for defocusing substrate aC versus X3 is given in Fig. 9. For

aC

2.6

2.2

1.8

1.4 6,

I ,,, ,,, ,,, ,

,.J____——
-15 -10 -5 0 5 10 15

.Y. —

(a)

15.50h
\

\l’*,\
aC -..* \

14.50
\! $ \
“.\’. \

14.00
,:-,-----------,,, ,., , ~,.-Jmv-.*,~,i-i

13,50
3.0

13.o13~
1 4 7 1(I 13

x, —
(b)

Fig. 9. a. versus X3 for defocusing substrate. All parameters are the same
as those in Fig. 5. (a) m = 0, (b) m = 1,

modes with m >1 it can straightforwardly be obtained with

Uc>m = a.,1 + m7r/
m

If X, ~ co or 6, ~ cc, values of a. will approach those

in the linear cases, According to (45) similar figures can also

be easily obtained.

For linear cases dispersion curves of guided waves in the

N w a plane are a set of discrete curves, but with nonlinear

cases, because there are many parameters for each given mode

m, dispersion curves can vary in a region, named the allowed

region. In Fig. 10 allowed and forbidden regions according to

(44) are given for nC = 1.55, n, = 1.54, nf = 1.57. In the

regions below the solid lines, guided waves have no maximum

in the cladding or substrate. In the regions above the solid lines

guided waves have a maximum in the cladding or the substrate

or in both the cladding and the substrate. All dispersion curves
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Fig. 10. Allowed and forbidden regimes according to (44). Shaded region:
forbidden regions; —: Xc = Xs = O; ● ● ● ● : linear curves. From the left

toright, m=O, m=l, m=2.

with possible tic, 6S, Xc and Xs are located in allowed regions.

According to (45) similar allowed and forbidden regimes can

also be easily obtained.

The guided wave power in Watts per meter along the z-axis

is given in terms of the Poynting vector in the usual way by [5]

(48)

or

Using the electric field solutions we have

[{

N G
Pf=—

sin (2kfa) ~z
—a A~+B~+

2 p. 2kfa ( f

with

Af =
Ev, (a) + Ev~(–a)

2 cos (kf a) ‘

Bf =
J%.(a) – J% J.(-a)

2 sin (kf a)

B;)
}

(50)

(51)

(52)

where Ev, (X) and EYC(X) are defined in ( 19)–(22) and (7).

Foroi=l(i=c, s)

Pi=&~(:y)2’’’~; cos;;6(t,>

i=c,s (53)

where al = aki(6i/2). For U; = —1 (i = c,s) the expression

of Pi can be easily derived replacing sinh (t) by cosh (t) in

(a) (b)

4

a;P

‘“’”~
O.MM

0.006

1
0404

a$q=5.O

O.000

0.002

1.550 1.554 1.556 1.562 1.5E4 1.570
N ——

(a)

N –—

(b)

2/6p “er~u~ N at X~ = Q c — s —
Fig. 1-1. cl. 6 – 6 – & a./a, is 5.0,4.5,4.0,
3.5, 3.0, and 2.5. (a) 6 = 0.5. (b) 6 = 1.

(53). (53) can be integrated analytically only for some values

of tii :

0,= 1 (i=c, s):

for 6~ = 0.5, (54)

‘i=J%w$)2(:-’anhF+:~kix,
. tanh —

)
, ford, = 1,

2
(55)
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{
Pi = ~N~(l –tanh(kiXi)), fordi = 2, (56)

.i=Jz:&(; – arctan [tanh (kiXi)]),

for r$~= 4. (57)

6i = 2 is the Kerr-like medium and expression (56) are the

same as equation (7) given by Seaton et al. in [3] who have

studied the same structure with Kerr-like nonlinear cladding

and substrate.

216P versus N with Xi = 0, 6C =In Fig. 11 curves of a.

6, = 6 and for various CW-CZ5are given. Here nf = 1.57, nc =

1.55, n. = 1.54 and Oi = 1 (i = c, s). From up to down at/as

is 5.0, 4.5, 4.0, 3.5, 3.0, 2.5, 2.0, 1.5, 1.0, and 0.5.

For other parameters similar curves of power P versus N

can be easily obtained using (53).

V. CONCLUSION

Guided waves in nonlinear planar waveguides have been

studied intensively. Nonlinear media which exhibit a field-

dependent refractive index which is proportional to the field

raised to some arbitrary power were analytically investigated.

It is obvious, from the derived analytic expressions that the

design of nonlinear guided wave devices which rely on power-

dependent changes in the field distribution depend strongly on

the form of nonlinearities.

Results show that for the completely symmetric structure

there are unusual asymmetric modes and for asymmetric

structure there are symmetric mode solutions. If a correct

field distribution with related initial parameters is launched

in the absence of loss, the wave should maintain that field

distribution as it propagates down the waveguide. Explicit

analytical expressions and illustrations given here can be used

for the design of the optical devices based on nonlinear

waveguide structures.
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