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TE Wave Properties of Slab Dielectric Guide
Bounded by Nonlinear Non-Kerr-Like Media

Jian-Guo Ma and Ingo Wolff, Fellow, IEEE

Abstract-—— TE wave properties of slab dielectric waveguides
with nonlinear non-Kerr-like substrate and cladding are pre-
sented. The guide can support even- and odd-symmetric modes
in asymmetrical substrate and asymmetrical modes in completely
symmetrical substrate. Dispersion relations and electric field
profiles are illustrated and analytically discussed in detail.

1. INTRODUCTION

T has been known since the early 1980s [3]-[6] that prop-
Ierties of waves guided by thin films take on striking new
properties when one or more of the bounding media exhibits an
intensity-dependent refractive index. With appropriate material
conditions, both wave-vector and field distributions become
strongly power dependent. Because a number of potential
applications for such nonlinear waveguides to all optical signal
processing have been identified in recent years with the devel-
opment of technology, increasing attention has been devoted
to these effects with a view to realizing these optical devices.
These developments. in turn, have recently stimulated more
realistic theoretical investigations of properties of nonlinear
guided waves [1], [7]-[13]. With some exceptions (see e.g.,
[1], [51, [9], and [10]), many theoretical studies of nonlinear
guided waves have been limited to Kerr-like nonlinear media
([31, [4], [6], [7]. and [13] and references therein). Moreover,
useful solutions of the nonlinear wave equation which include
a field-dependent dielectric constant have been obtained for
the Kerr-law case.

However, in real world cases, many materials exhibit a
refractive index which varies with the electric field raised
to a power other than two [l], [5]. The actual dependence
of the index on the optical field is intimately related to
the physical process which gives rise to nonlinearities, such
as semiconductors diffusion and recombination effects, etc.
In retrospect, the formalism necessary for generalizing the
analysis of nonlinear slab-guided wave phenomena to non-
Kerr-like media has been available for some time [1]. [5].
[9], and [10] and many numerical methods, such as beam
propagation method [11], finite-element method [12], the first
integration method [5], the phase-plane approach [1], and
Runge—Kutta [2] have been employed.

Here, we systemetrically examine the variation in TE wave
solutions with guided wave power, because the use of TE
solutions has the strong theoretical advantage that Maxwell’s
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equations reduce to a single fundamental nonlinear equation
that, under an assumption of power-dependence with a form
¢ ~ |E|°, where & is a arbitrary positive quantity, can be
solved analytically. The structure discussed in this paper is
a linear thin dielectric slab guide. with refractive index ny,
sandwiched between two nonlinear semi-infinite dielectrics.
For the case of Kerr-like nonlinearity Boardman et al. [6]
and Seaton et al. [3] have studied this structure numerically
and analytically in detail, respectively. For the case of non-
Kerr-like nonlinearity, which is the more practical case, this
structure has been numerically discussed by Stegeman er al.
[5] using the first integration method.

Although numerical methods are generally effective, they
present also the disadvantage of not allowing physical in-
terpretation of solutions. In nonlinear problems, in fact, the
existence and identification of invariant quantities related to
observable physical parameters of the configuration is partic-
ularly important. Using purely numerical methods, however, a
qualitative analysis of the structure is not possible and many
of its underlying features can not be perceived so clearly.

In this paper, a slab guide with a nonlinear cladding and
substrate both having nonquadratic power-law dependent re-
fractive index is analytically studied, and closed-form solutions
will be given for the first time. They indicate that there are
even- and odd-symmetric modes in this structure not only for
symmetric cladding and substrate, but also for asymmetric
cladding and substrate., and for completely symmetric cladding
and substrate there are asymmetric modes too. Propagation
properties of the guide are illustrated and discussed.

This paper is organized as follows: In the next section an-
alytical solutions for special non-Kerr-like nonlinearity which
varies with the electric field raised to a power other than two
are given. The third section deals in detail with analytical
results for even- and odd-symmetrical modes supported by this
structure. General TE modes are presented in Section IV. Some
general properties and conclusions are discussed in Section V.
Since it is not feasible to examine all possibilities in detail, we
will concentrate on those which are of interest for experiments
and potential device applications.

II. THEORETICAL APPROACH AND ANALYTICAL SOLUTIONS

The geometry considered in this paper is shown in Fig. 1.
It is assumed that the film region (—d <z < d) has a linear
refractive index ny (related relative dielectric constant is
ef) that is independent of the wave power. Both of the
cladding and substrating media can exhibit a field-dependence
relative dielectric constant of the form ¢, = nf + a.|E. be or
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Fig. 1. The nonlincar guided wave geometry for the analysis.

€s = n2 4 a,|E.|% for the cladding and substrating medium,
respectively. Wave fields investigated here are TE polarized
having the form [3]

E(r,t) = Re {E(z)e’@t=82)}, m

Only the component F, of electric field is not zero in this
case.

Using ¢, f, s referring to cladding, film and substrate, re-
spectively, the field must satisfy the following equations [5]:

d’Ey.

dz2 + (k2n? - B° + kgo‘clEycPC)Eyc =0,
(x < —d) 2)
d*E,;
o Yo (k2nE — By =0, (-d<z<d) ()
d’E,,
Wg + (kf 2 ﬁ2 + k20‘s|Eys'5 )E ys = 0,
(d<z) C)]

where k2 = w?p,€,, ; (i = c,s) is the nonlinear coefficient.
a; >0 (i = ¢, s) is named a focusing medivm, and a; <0 (i =
¢, 8) a defocusing medium.

Using normalized parameters recommended by Rozzi et al.

(1]

ki =N?>—-n2, k}=n;-N? k=N -nl, (5
X =kox, N:’% a = kod ©)
and
ue(X) =0 Bye(X),  up(X) = Eys(X),
us(X) = |ag|/% Eye(X) (7

thus the wave equations (2)—(4) become
i1o(X) — (k2 = og|uc)®)uc(X) =0, X < —a ®)
iip (X) + k3ugp(X) =0, —-a<X<a ©)
(X)) — (k2 — 04 ]us)|® )us(X) = 0, a< X (10)

where for focusing media o; = 1 and for defocusing media
o =-1(Gi=¢s).()=d*()/dX>

The analytical solution of u.(X) and us(X) for focusing
and defocusing media, respectively, is formed as follows:
For focusing medium (o; = 1), let

Ac

we(X) ==+ 11
0 cosh® [Bo(X. — a — X)) (an
thus
Ue = AeBetanh [Bo (X, — a — X)]u.(X), (12)
ite = (AcBetanh [Bo(X, — a — X)])2uc(X)
—AeBE——y X (13)
cosh” [Bo(X. — a — X)]
and
TG o J— , (14)
cosh™ [Bs(Xs — a + X)]
= —AsB; tanh [By(Xs — a + X)]us(X), (15)
ity = (AsBs tanh [Bs (X, — a + X)])us(X)
Byl ) (16)
cosh” [Bs(Xs — a + X)]
where A; >0 (1 = ¢, 5). Substituting (11)—(13) into (8)
(AB. tanh [B.(X, — a — X)])?
_ )\ch2 _ k?
cosh?[B(X.—a—-X)] °
Aé-
+ < =0. 17
cosh®*e [B,(X, — a — X)] )
If (17) is satisfied, it must be
2 ke 6.
Ac'—g;; BC—X:_2]CC‘)
1/6.
A, = (kfz + 5c) ) (18)
2
Therefore, the solution of u.(X) in the cladding is
(kz 2+ 50) 1o
ue(X) = + 2 (19)

/6.
{cosh2 [%kc(Xc —a— X)] }
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Similarly, the solution of u,(X') in the substrate is

1/6,
<k22+5s> /
52
us(X) == 5 s (20)
{cosh2 [iks(Xs —a+ X)] }
For defocusing media (o, = —1), analytical solutions can
be also obtained
1/6¢
(A;22+6C) /
€ 2
u(X) =% ; R 2n
{sinh2 [ékc(xc —a-— X)] }
1/8s
( 22t 6s> /
52
us(X) ==+ (22)

5 1/6: "
{sinh2 [-231@5()(5 —a+ X)] }

Thus, solutions for non-Kerr-like nonlinear focusing and
defocusing media are derived, respectively. Here X, and X,
are parameters related to initial conditions. In (19) and (20)
X, (¢+ = c¢,s) can be positive, negative and zero. But for
solutions of defocusing media X. and X, must be positive,
because the function 1/sinh (w) has a pole at w = 0. If
6, = 2 (v = ¢, s) (Kerr-law dependence) solutions (19)—(22)
are identical to those given by [3] and [4]. Using the derived
analytical solutions electromagnetic wave propagation of the
waveguide shown in Fig. 1 is studied.

III. SYMMETRIC MODES

For symmetric modes (even modes) there is F¢(—a) =
E¢(a), and for anti-symmetric modes (odd modes) there is

Ef(-a) = —Ef(a).

A. Even Modes or Symmetric Modes
The solution of guided-waves in a linear film is well known
Uf(X):AfCOS(kf‘Y), N <ny. (23)

Using boundary conditions at X =
medium we have

+a, for focusing

e 8 X ke
tan (kja) = ke tanh (——), (24)
k¢ 2
ks 0 X sk
=% tanh (——2 ) (25)
1 u(—a)
Ar= al/® cos (kga)’ (26)
1 ug(a)
= _— 2
ay/®e cos(kya) @D
It must be
k. tanh (6CXckc> =k, tanh <§s—g(s—k$>, and
2 2
U’C(_a‘) us(a)
/6. o178 (28)

For o; < 0,coth (6.X.k./2) and coth (6, X,k,/2) replace
the tanh (6.X-k./2) and tanh (8, Xsks/2) functions in the
above equations. The dispersion relation is:

=k d—i + arcta li“
a—o—kfmwa nkf ,

m=(0},1,2,--- 29

with
Xeke . .
k! = k.tanh <§—CT—>, focusing-medium (30)

or

6 X ke
2

k., = k.coth ( ) defocusing-medium.  (31)
If X. — oo, (29) becomes the linear dispersion equation.
X, can be both positive and negative, if X, < 0, m must be
larger than zero. Now the mode with m = O does not exist,
and the mode with m = | becomes the fundamental mode.

In Fig. 2 dispersion relations of even symmetric modes
are given. It shows if X. = 0, curves for various ¢. are
overlapping, and the m = 0 mode in nonlinear cases only
exists for X, > 0. If X.> 0, the larger 4. is. the smaller the
difference between linear cases and nonlinear cases is. But for
X, <0, the larger &, is, the larger the difference between linear
cases and nonlinear cases is. If the cladding and the substrate
are both focusing media, all curves of the nonlinear case are
above those of the linear case, but for defocusing media curves
of the linear case are above those of the nonlinear case as
indicated in Fig. 2(c).

As an example, the electric field distributions of the even-
mode TE; are shown in Fig. 3, the parameters are: N =
1.560099,6, = 1.0,1.5,2.0,25, X, = 5 or X, = -5 and
o, = 1. Tt is shown that for X, = —35 there is a maximum in
the cladding and the substrate.

B. Odd-Modes or Antisymmetric Modes

In the case of odd modes the solution of guided-wave in
the linear film is

us(X) = Bysin (ks X), N <ny (32)
and the dispersion relation is
1 1 k!
a=kod= E Km - 5)% + arctan <i)] (33)

also (28) must be satisfied.
In Fig. 4 dispersion curves of the odd TE guided modes are
given for a focusing cladding and substrate.

C. Remarks

For a focusing media if X, is zero. k., defined in (29) is
zero, too. Now both dispersion relations of the even-modes
(29) and the odd-modes (33) are dependent only on ky. That
means, they are independent of k., k, and é.,68,. For even-
and odd-symmetric modes, only the conditions given in (28)
are needed. If n, = nys, 6, = 5.0, = a5, X, = X, these
conditions are automatically satisfied. In the following the
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Fig. 2. Dispersion curves of even-modes for various Xc. nc = ns = 1.55,ny = 1.57. Dotted lines: linear cases. é; is 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5,
and 4.0 from left to right for (c) and from right to left for (b) and (d), respectively, for each mode m. (@) X = 0,0 = 1., () X = ~1,0 = —1

© Xe = 1l,o =1, @@ X = 1,06 = —1.
If X, = 0, it follows from (34) that X; must be also zero;

asymmetric case shall be studied. For simplicity only the case
6. = 6, = § is discussed. Conditions in (28) become (33) is

0. = 05 = 1t
ke e
h T\ (37

k,tanh <5X26kc) = k,tanh (6X25k3) (34)

that is, if n, # ns, we can choose a suitable parameter

and pair a., X, and a4, X, to satisfy (36), (37), or (28). Now

the cladding and the substrate are not symmetric, but it can

1 e = 1 ks (35) support even- and odd-symmetric modes. For given cladding

Vee cosh (5Xsk8) Vs cosh <6X8k8) and substrate, only these modes which have the normalized

2 2 propagation constant N determined by (36) can exist in this

structure with symmetric or anti-symmetric field distribution.

where the solutions (19) and (20) have been used. And As an example, in Fig. 5 the dependence a = /o, Jor, versus
. X, are drawn for X, = 10.,n. = 1.55,n, = 1.54,ny =
sinh (6X,ks/2) _ \/E 36) 157N =1560099,0, = o, = 1 and 6 = 05, 1.0, 1.5, 2.0,
sinh (6 X k. /2) o 2.5, and 3.0. All of values in these curves satisfy (28) and
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Fig. 3. Electric field distributions #(x) = f¢/oc  E(x) of the
TE;-mode for focusing media. Solid lines: X. = X, = §; Dotted

lines: X = Xy = —5,6c = 1, 1.5, 2, and 2.5.

can support both even- and odd-modes which have the same
values N and a = kod.

Therefore, for completely asymmetric substrates even- and
odd-modes can also propagate in nonlinear guides unlike in
linear cases! For other cases o. # o, and 6. # &, similar
results can be also obtained.

From (29) and (33) it is known that the dispersion relation
of the even- or odd-modes is only an explicit function of &/,
and it is not directly dependent on the parameter k.. k. can
be determined from (36).

IV. GENERAL TE-MODES

A general solution for the field in the linear guide for guided

waves is:
uf(X) = Afcos(ksX)+ Bysin (kg X). (38)

Using solutions given in (19)—(22) and boundary conditions
at X = +a we have

Aglkgsin (kpa) — k. cos (kya)] + By[kys cos (kra)

+ k. sin (kfa) = 0, 39)
—Aglkgsin (kya) — ki cos (kga)] + Bk cos (kya)
+ K, sin (kfa) =0 (40)
with
ki =k, tanh <§i)—;ﬁ> for focusing-medium,
(i =c,s), 41)
8 Xk, . )
k; =k, coth <T) for de-focusing-medium,
(1=c¢9). (42)

If &/ = k., because (39) and (40) must be simultaneously
satisfied, this leads to

Ay=0, By#0 or Ay#0, By=0 (43)

1.5700

1.5650

1.5600

1.6550

1.5500

15700

15650

1.5600

15650

15500

1.5700

15650

1.5600

15560

1.5500;
m=1,

_m=3

w2
10 20 3 40 50

fi—

(c)

Fig. 4. Dispersion curves of odd TE modes. o, = 1,n, = ns = L.55,
ny =157 (@ A:=0.b) Xe =1 (c) Xc = -1

in other words, these modes degenerate into odd-modes or
even-modes as they have been discussed in the above section.
That is, if and only if k/, = k., the structure can support even-
and odd-modes.
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Fig. 5. ‘w/ac/as versus X for Xe = 10,n. = 1.55,ns = 1.54,n5 =
1.57,N = 1.560099,0., = 05 = 1 and 6 = 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0.
From (39) and (40) the dispersion equations can be derived
kra =mm 4 arctan
\/[k§ + (K5)2][kF + (kL)2] — (K7 — kLEL)
ks(k; + kL) ’

(m=(0),1,2.-+), (44)
and
kfa =mm — arctan
VIS + (R)21[K% + (k1)) + (K3 — KykL)
ICETA !
(m=(0),1,2,-). (45)

Here the existence of the mode with m = 0 depends on the
parameters X, and X,. If £, + k. > 0, in (44) m can be zero,
but in (45) m must >0. If k. + &/, <0, now in (44) m must
>0, and in (45) m can be zero.

If k. = k!, (44) and (45) will be identical with (29) and
(33), respectively.

Let A = k! — k! >0 and (A/k.) < 1, then (44) and (45)
can approximately be written as

k! A
tan (kfa) = % + —, (46)
(kra) Ry Tk
and
kg
tan (kfa) ~ ——- (€))

It shows that effects of A on even-modes are larger than
those on odd-modes.

The derived dispersion equations (44) and (45) are valid for
all possible combinations of the cladding and the substrate.
Only k. and k! are different and they are given by (41) and
42).

735
018~ "
ta ., §=3 Wt .
0.12
te,, 25 R '
£3(a)
0.08
‘e, 2 o ¢
0 ‘l“A“‘.‘l.6=3
| daene, .
..\nu..' 2 '.' o.
om0 V’“'" 1. KR L .
0.00 0.4 0.08 012 0.18
B(-a) —
Fig. 6. Phase portrait of the asymmetric structure: ny = 1.57,n. =
1.55,n, = 1.54, as /e = 1.5,6 = 3.0, 2.5, 2.0, and 1.0, respectively.
0.060
0.045 §=2
E(a)
0.030 175
15
0.015
0.000
0.000 0.015 0.030 0.045 0.060
F*(—a
Fig. 7. Phase portrait of the completely symmetric structure:

ng = 157,n, = ny, = 155 asf/ac = 1,6 = 1.0, 1.5, 1.75, and
2.0

If k), # k., there will be no even- and odd-symmetric modes
in this structure. In (41) and (42) the parameter X; (i = ¢, 3)
is dependent only on initial conditions and is neither a material
nor a structure parameter. If the cladding and the substrate are
really symmetric, that is, 6. = 65,1 = ns, 0, = «,, and
X, # X,, we have k!, # k/,. That means only asymmetrical
modes now can exist in the structure. In linear cases if and
only if the cladding and the substrate are symmetric, even-
and odd-modes can propagate in these guides. For Kerr-like
cladding and substrate (6, = §; = 2) our conclusion consists
with results given by Boardman et al. [6, pp. 1703] who have
found that there are unusual asymmetric waves in a completely
symmetric structure.

In Fig. 6 phase portraits for asymmetric structures are given.
They indicate that for each set of determined structure param-
eters there are two branches. For the completely symmetric
structure the phase portrait is shown in Fig. 7. It shows that
there are either symmetric modes (diagonal line) or unusual
asymmetric modes (other lines). Here 6, = 6;. From Fig. 7
it is seen that for a given value of E2(—a) there are two
values of E2(a), one is for symmetric modes and the other
for asymmetric modes.
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Fig. 8. The cutoff factor a. versus X according to (44) with
ny = L57.nc = 1.55,ns = 1.54,6; = 10, 1.5, 2.0. 2.5, and 3.0,
respectively, for focusing substrate and 6. = 1. e e e e: linear modes.
@m=0 ObOym=1

In following discussion, it is always assumed that n. > ns.
Now the cut-off condition is k. = 0 or N = n.. From (44)
and (45) the cut-off factor a. can be simply obtained. For
0. = Lk, =0=k, =0, for 0. = -1,k = 0 =
k= (2/6.X.),(X.>0). Thus, for focusing cladding the
cut-off factor a. is independent of the parameters X, 6., but
for defocusing cladding it is also a function of parameters
X, 6.. As examples, only cutoff conditions of modes m = 0
and m = 1 according to (44) with k. = O are shown.
Here ny = 157,n. = 155,n, = 1.54,6, = 1.0, 1.5,
2.0, 2.5, and 3.0 and the cladding is focusing medium. For
focusing substrate the dependencies a. versus X, are given
in Fig. 8(a) and (b) for m = 0 and m = 1, respectively, and
for defocusing substrate a,. versus X is given in Fig. 9. For

30

26

e 2

15.30

1500

Qe

.30

14.00

- ~
~aa - -
R I It L L T e

L T R I R itk oL L e PR e

3.0
1350

1300 -

(®)

Fig. 9. a. versus X for defocusing substrate. All parameters are the same
as those in Fig. 5. (@ m = 0. (b) m = 1.

modes with m > 1 it can straightforwardly be obtained with
Gem = Q1 +mm/y 0% —nl.

If X; — oo or 6, — 00, values of a. will approach those
in the linear cases. According to (45) similar figures can also
be easily obtained.

For linear cases dispersion curves of guided waves in the
N ~ q plane are a set of discrete curves, but with nonlinear
cases, because there are many parameters for each given mode
m, dispersion curves can vary in a region, named the allowed
region. In Fig. 10 allowed and forbidden regions according to
(44) are given for n. = 1.55,n, = 1.54,ny = 1.57. In the
regions below the solid lines, guided waves have no maximum
in the cladding or substrate. In the regions above the solid lines
guided waves have a maximum in the cladding or the substrate
or in both the cladding and the substrate. All dispersion curves
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C
(=3

Fig. 10. Allowed and forbidden regimes according to (44). Shaded region:
forbidden regions; —: X. = X, = 0;e e e e: linear curves. From the left
to right, m = 0,m = 1,m = 2.

with possible é., ds, X. and X, are located in allowed regions.
According to (45) similar allowed and forbidden regimes can
also be easily obtained.

The guided wave power in Watts per meter along the z-axis
is given in terms of the Poynting vector in the usual way by [5]

P:g\/—;—E/_mEg(x)dx

N o [
p=" /;_/ EXX)dX = Po+ Py +P,.  (49)

(48)

or

Using the electric field solutions we have

_N e 2 2, Sin(2kra) o 2
P_f—- 2 /,Loa{Af+Bf+ 2kfa (Af B_f)

(50)
with
Eys (a) + Eyc(“a)
As 2cos (ksa) ’ S
EyS(a) - EyC(_a)
By 2sin (kya) ©2)

where E,;(X) and E,.(X) are defined in (19)—(22) and (7).
Foro; =1 (i = ¢, 9)

=N [ (k32+6i)2/6“/°" dt
¢ 61k1 Ho \ O 2 al COSh4/6l (t)’

N

(33)

where al = ak;(6;/2). For o; = —1 (i = ¢, s) the expression
of P; can be easily derived replacing sinh (¢) by cosh (¢) in

737
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Fig. 11. a2/°P versus N at X, = 0,6. = 8, = 6. ar/ s is 5.0, 4.5, 4.0, -
3.5, 3.0, and 2.5. (2) 6 = 0.5. (b) 6 = 1.

(53). (53) can be integrated analytically only for some values
of 6z

g, =1 =¢s)

N _[(1.25k2\*/1 ki X
P, = 6"—2(125)k’) (—G—tanh

1o ki i 35 4
X; X, 1 k.X;
+ tanh® kiXi 0.6 tanh® kX, + = tanh” =2,
4 7 4
for 6; = 0.5, 54)
2
o (18) (2 pann e, L
P= MoNkz(Oéi) (3 tanh 2 +3
- tanh3 ’f%) for 6, = 1, (55)
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P = E—ON%(l — tanh (k;X;)), for 6 =2, (56)
&N [3 /7
P, = E;, / E;(Z — arctan [tanh (kZXz)D,
for 6; = 4. &)

6; = 2 is the Kerr-like medium and expression (56) are the
same as equation (7) given by Seaton ef al. in [3] who have
studied the same structure with Kerr-like nonlinear cladding
and substrate.

In Fig. 11 curves of ag/éP versus N with X; = 0,6, =
8, = & and for various a,/«; are given. Here ny = 1.57,n, =
1.55,n, = 1.54and o; = 1 (i = ¢, s). From up to down o;/c,
is 5.0, 4.5, 4.0, 3.5, 3.0, 2.5, 2.0, 1.5, 1.0, and 0.5.

For other parameters similar curves of power P versus N
can be easily obtained using (53).

V. CONCLUSION

Guided waves in nonlinear planar waveguides have been
studied intensively. Nonlinear media which exhibit a field-
dependent refractive index which is proportional to the field
raised to some arbitrary power were analytically investigated.
It is obvious, from the derived analytic expressions that the
design of nonlinear guided wave devices which rely on power-
dependent changes in the field distribution depend strongly on
the form of nonlinearities.

Results show that for the completely symmetric structure
there are unusual asymmetric modes and for asymmetric
structure there are symmetric mode solutions. If a correct
field distribution with related initial parameters is launched
in the absence of loss, the wave should maintain that field
distribution as it propagates down the waveguide. Explicit
analytical expressions and illustrations given here can be used
for the design of the optical devices based on nonlinear
waveguide structures.
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